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Chapter 1

TNT RODUCT ION

The dissemination of an accurate Time Reference throughou t a ne twork has

important applications in the operation of a switched digital communication

network [1—4]. The method of Time Reference Distribution , studied in [5—8],

is a hierarchical method of disseminating such a reference throughout a

network. I t  enables each node of the network to select the best available

reference in the network , by processing informat ion received from its neigh-

boring nodes.

This report presents a detailed feasibility study of using a micro-

processor at each node to implement the operational procedure of Time

Reference Distribution. Three alternative algorithms of microprocessor

implementation are proposed and a sample design Is given of a microprocessor

system for one of the algorithms . It should be pointed out tha t no actual

ha rdware simulations have been performed , but the design considerations have

been presented in suff ic ient  detail to demonstrate the feasibility of the

design and to serve as a guide for hardware simulation. The study is t hus an

intermediate step between theory and hardware , and , it is hoped , brings the

Time Reference method closer to implementation.

* Various hardware techniques such as hard—wired logic and programmable

log ic can be used to imp lement a nodal processor. Hard—wired logic consists

of logic gates , mult ivib rators , counters and other commercially available SSI

or MSI components 19L . On the other hand , programmable logic consists of a

stored program which controls the functions of a microprocessor (or CPU) In

a minicomputer or microcomputer 1101.

1.
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For a par ticular applica tion , hard—wired logic , microprocessors , micro-

computers or minicomputers could be used to Implement the logical control

functions. The tradeoffs between these techniques are based on developmental

costs and time, ease of making system eng ineering changes , complexity, speed ,

and reliability.

The developmental time and cost for designing and debugging hard—wired

log ic in comparison to programmable logic restricts their use to high volume

applications where the engineering costs can be distributed over many units.

For programmable logic , once the logical functions of the design are defined ,

It becomes a simple ma tter of encoding them in to a sequence of ins truc tions

and storing them in memory [11). The use of design aids such as compilers ,

assemblers , edi tors , and simula tors allows rap id debugg ing of the app lication

programs [11,12]. System changes , whether the addition of new functions or

the modification of existing functions, are accomp lished via a rela tively simple

program change . With the hard—wired logic approach , minor log ical changes can

cause major hardware changes which must be implemented at a high cost.

A few remarks might be useful here to explain why the study considered

the use of a microprocessor instead of a minicomputer to implement the logical

functions of the Time Reference Distribution Method . The emergence of the

microprocessor has enabled an impressive amount of data processing to be

per formed on small and inexpensive chips. This means that instead of the

computing power residing in a single , large , cen tral processor , it can be

diffused into small and inexpensive units composed of groups of chips , each

designed to match the particular needs of the app lication. This ‘decen traliza-

t ion ’ results In an increased re l iabi l i ty ,  since the fai lure of an individual

unit  is likely to be less extensive in its e f fec t s  than the failure of a single

2.
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cen tral processor . It also makes for easier and cheaper maintenance , since

the chips are inexpensive to replace. However , micr oprocessors are , at

present , a good deal slower [13] than minicomputers. One expects , however ,

that the gap will get narrower and narrower . Some estimates of the processing

time are given later in the report (p.53) for the implementation of the Time

Reference scheme, It is expected that the execution of the algorithm of Time

Reference Distribution (i.e. the process of reference selection) will take

place at much longer intervals (perhaps minutes or hours) than the exchange of

timing information. Hence the speed of execution of the algorithm is not a

cri tical considera t ion , and the estimated times on p. 53 are much smaller than

will be required in network operation .

The microprocessor is still a technological infant. Hence , its ful l

impact on data—processing problems and the full range of its potential

app licat ions are difficult to envisage at this stage of its development.

However , the review articles appearing in the IEEE Spec trum (January, Apr il

1976) describe applications already found and give a gl impse of the

possibilities fo r the fu ture .

The report is organized as follows . Chapter 2 contains a comparative

description of the characteristics and capabilities of several microprocessors

tha t are available at present . Chapter 3 is a brief explanation of the rules

of operation of the Time Reference Distribution method . Chapter 4 examines

the details of m i c roprocessor implementation of those rules and presents

th ree d i f f e r en t  algorithms of microprocessor implementation . Chapter 5

discusses the actual design of nodal processor for one of the three

algorithms developed in Chapter 4. This is done in suff ic ient  detail to show

that the microprocessor implementation is indeed feasible. Chapters 4 and S

3.



comprise the main results of this study. Chapter 6 summarizes the conclusions

of the study and offers suggestions for further studies. The Appendix contains

a program lis t ing for  the samp le des ign of Chapter 5.

4.
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Chap ter 2

SURVEY OF MICROPROCESSOR CHARACTERISTICS AND CAPABILITIES

Microprocessors and microcomputers have been given many different

definitions. Here, we shall define a microprocessor as a processing unit

which is composed of one or more large—scale integration (LSI) chips, is able

to accep t data and modif y it by using arithmetic and logical functions and is

able to output the data. In this definition there is no reference to how the

4 process is controlled , whether it is by macrolnstruction programming or by

microprogramming. This aspect lies outside of the basic definition .

A m icrocomputer is defined as a microprocessor which is used as a

central processing unit (CPU) to which memory and I/O devices are connected .

Microprocessors can be compared in many ways [15]. They can be charac-

terized by their speed , I/O transfer , number of internal registers, addressing

modes , memory—accessibility, interrup t capabil it ies , and stack capabilities.

The speed of a microprocessor is a function of the technology, da ta and

address pa th wid ths , number of separate paths and overlap in fetch and execute

cycles.

Semiconductor processing technologies used include metal oxide semi-

conductor (MOS), silicon—on—sapphire (SOS), integrated injection logic (1
2L ) ,

and low—power Schottky. A performance comparison [16 1 is made in Table 1 for

LSI p rocessors manufactured by these d i f feren t  technologies.

In Figure 1 a comparison is made of memory eff iciency versus operationa l

speed f or some present ly avai labl e microprocessors , evaluating these devices

through five test programs [171. These benchmark programs consisted of the

following routines :

5.
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L Movement of a block of data (less than 256 bytes)  f r om one area

of memory to another .

2. Servicing an interrupt (housekeeping only).

3. Addition of a sequence of N decimal digits to another sequence

and storage.

4. Searching of a memory page for a character string .

5. Monitoring of 8 I/O devices for activity a’id adding to file for

each device input.

I/O transfers can be divided into three classes: programmed transfer ,

interrupt—program control and hardware control [18].

For programmed transfers, all instructions to receive or transmit data

are included in the program . Data is transferred in or out when an appro-

priate instruction is executed.

The program interrupt approach requires I/O devices to signal the

microprocessor by an interrup t when they are read y to transm it or re ceive

information . When a microprocessor is interrupted , it stops its normal

program , stores its state, and jumps to an interrupt service routine which

effects the appropriate transfer. As soon as an interrupt has been serviced ,

the microprocessor returns to the state from which it was interrupted and

resumes its normal program execution.

Hardware control of information transfer requires the I/O devices to

initiate and control the data transfer to and from an external memory. The

sof tware f or opera tion is minimal but addi t ional  ha rdwar e is needed since

transfers occur without microprocessor intervention .

The number of interna l registers and addressing modes present in a

microprocessor is related to the speed of operation and also to the amount

8.
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of external memory that  will be needed. These factors also give an indication

of how efficien tly a microprocessor can be programmed .

Microprocessors have many different kinds of addressing modes. Examples

are poin ter , direc t, indirect , relative, immediate , and indexed modes.

The pointer—address mode allows a microprocessor with a short work

length to address larg ’~ memory arrays. This is accomp l ished by keeping the

addre ss in a spec ial reg ister which is pr eloaded by an ins truction in the

program.

For any processor , an ins t ruct ion consists of an opcode and an operand

code. When using the direct—address mode , the operand code contains the

direc t address and the processor executes the instruction with data found in

the location specified by that address.

The indirect—addressing mode results in the operand code containing a

po in ter to a loca t ion in memory in which the address of the data is located .

Using the relative—address mode , the address contained in the operand

code is modified by a base address before the data location is reterenced.

For the immediate mode , the operand code is an immediate address by

which the processor executes the instruction on the operand code itself.

The indexed—addressing mode results in the address contained in the

operand code being modified by the contents of an index register. This

P modified address not only allows any location in memory to be addressed , but

it also makes it easier to perform repeated operations.

-
‘ 

Another distinction that can be made between microprocessors is whether

or not they are microprogrammable. Microprogramming is the programming of

bit patterns which reside in a special control that directly controls the

operation of each functional element in that microprocessor [191.
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The interrupt capabilities vary greatly between ditferent microprocessors.

Tnese capabilities range from no interrupts to multi—level vectored interrupts.

Although most microprocessors have single—level interrupts , the method by

which the state of the machine is saved can vary considerably.

Saving the state of an Intel 8008 microprocessor requires extensive

software and additional hardware. When an interrupt occurs , the program

counter is saved in an internal stack. If the accumulator or any other

part icular register is to be saved , it must be loaded into an external memory.

Some m icroprocessor s such as the In tel 8080 , Motorola M6800 and Nationa l

PACE have alleviated this problem . Their architecture includes a push—down

stack with specific instruc tions for saving the processor status. The stacks

for the In tel 8080 and Mo torola M6800 are imp lemented in external storage ,

whil e the PACE has an on ch ip stack.

Microprocessors such as the Intel 8080, Mos tek 5065 , Motorola M6800 and

Rockwell PPS—8 can enable or disable interrupt requests with special instruc-

tions whIch set or reset an internal interrupt control flip flop. For

processors without this ability, the use of external gating may provide similar

control over the interrupts.

The PACE microprocessor can also enable or d isable its interrupts. PACE

uses a status register which uses 6 of its 16 bits for control. One bit can

disable all of the interrupts. When an interrupt service routine is entered ,

this bit automatically disables all interrupts . However , this bi t can be

reset by software. Of the remaining programmable bits , one controls an

interrupt that is generated when the internal stack is full or empty. This

allows, through the use of an interrupt service routine , the stack to be ex-

tended in external memory.

10.
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~f several interrupts occur simultaneously and it is necessary f or one

interrupt to be serviced before the other , a priority system is needed. Most

microprocessors must rely on software or external hardware or both to establish

a pr iority interrupt system.

Some microprocessors have priorities built in. The Mostek 5065 has two

level s of interrupt. The four interrupt inputs of the PACE microprocessor are

priority oriented , as are the eight interrupt inputs of the Toshiba TLCS—l2.

M icroprocessor s such as Fairchild’s F8 and Rockwell’s PPS—8 provide interrupt

priorities since they have a daisy— structure. In this structure , all

connections to the bus are made in a serial fashion where a signal can be

modif ied by a device before it gets to the next device. Whenever an interrupt

oc curs in a device , the signal is not allowed to propagate past that point on

the bus. Therefore, those devices closer to the microprocessor have a higher

priority.

Mos t microprocessor s only allow a single level of interrupt . When an

in terrup t occurs , there is a transfer of control to a certain memory location

which gives the address of the interrupt service routine. If there is more

than one source of possible in terrupt , all sources must be polled to find

which caused the interrupt so that the appropriate service routine can be

called .

Inte l ’ s 8008 and 8080 use a vectored interrupt .  When there is an

interrupt request , several input bits called the vector are checketh Depend—

• - ing on the bit configuration , a d i f f e rent address for the service routine is

specified. The vector is constructed wi th  external hardware where up to eight

interrupt sources are encoded.

Motorola ’s M6800 microprocessor in conjunction with i ts Peripheral

11.
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In terface Adaptor (PIA) allows, via a sof twar e routing ,  the con trol registers

of each PIA to be polled on a p r ior i ty  basis to deter .nine which device caused

the interrupt .

Some microproces sor s, however , do allow mul t ip le—levels of interrupt .

The Rockwell PPS—8, Toshiba TLCS—12 , the Mo stek 5065 , and the Na tional PACE

exhib i t  these c a p a b i l i t i e s .  The use of m u l t i ple level i n t e r rup t  allows an

Immedia te  de t e rmina t i on  of which device has requested an interrupt .

The Toshiba TLCS— l2 reserves a general regis ter  fo r  a p rogram—sta tus

word which conta ins  the  c u r r e n t  s t a t e  of the microprocessor and the program

being executed. Whenever an interrupt occurs , the program—status word is

exchanged w i t h  another  program s t a t u s  word which de f ines  the s tate  of the

microproc essor , so the interrupt can be serviced . Since there are eight

sepa rate interrupt  lines , ei ght separate external  memory locations are needed

to store the exchanged s t a tu s  words. The highest  p r i o r i t y  in t e r rup t  uses

location 8 in memory for  i ts  exchange and the lowest p r io r i ty  uses location

15. Since each interrupt  line has an independent p r io r i ty ,  an i n t e r r u p t  is

onl y accepted when the mask bi t  located in the s tatus word is a 1 and no higher

pr iority interrupt is requested. After the interrupt has been serviced , the

status word of the interrupted program is r estored to the general regis ter so

the Interrupted program can be resumed .

-~~ 
- -  — Micropro cessor s usuall y have either an internal or external pushdown

stack. A pushdown stack Is a linea r list , that  is , the last item added to the

list is the f i r s t  item that  can be removed [20] .  A pushdown stack allows the

storing and later retr ieving of the contents  of the accumulator , f lags , or any

data register . One advantage of using a pushdown stack is that  mul t i ple level

Inter rupts  can be handled since on the occurrence of an interrupt , the status

12.
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of the mic roprocessor can be saved and then restored after tile interrupt is

serviced. Other advantages are register transfers are minimized , sor t ing is

a ided , and subroutine nesting is made possible . When external memory is used

to imp lemen t the stack , the only limitation on the length of the stack is the

size of the memory.

Some microprocessors have a direct—memory access (DMA) capability. DMA

is the rapid transfer  of da ta be tween peri pheral devices and external memory

without microprocessor supervision . This is accomplished by stealing memory

cycles from the program and transferring the data to or from locations in

memo ry which are addressed by a special register . Since this address reg ister

is incremented after every transfer, successive da ta words can be transferred

to or from memory.

To implement DMA , external hardware is needed . A register is needed for

the memory address and another register is used for the word count . Control

circuitry is also needed to ini tiate the memory cycle , once data is ready.

With the Intel 8080, the address reg ister must be loaded with the memory

add ress and the word count register with the total  number of words. When the

external hardware generates a HOLD input to the CPU, and if the CPU is in the

HALT state, the CPU enters the HOLD state. The CPU will also enter this  state

if it is in the T2 or TW state and the READY signal is active. The T2 state is

that part of the instruction cycle in which the READY , HOLD , and HALT signals

are tested. The TW state is a wait state. The HOLD state allows an external

device to gain control of the address and data busses as soon as the current

machine cycle is completed . When the CPU enters the HOLD state, a hold

acknowledge (HLDA) signal indicates to the external hardware that the data and

address busses have gone to their high impedance state and a transfer can occur.

13. 
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Table 2 gives an overview of some of the major characteristics found in

some current microprocessors [15]. Appendix B lists the manufacturers of

some of the currently available microprocessors.
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Chapter  3

THE METHOD OF TIME—REFERENCE DISTRIBUTION

There is a growing need [1—3] to disseminate a common reference for

precise t ime and time—interval (PITT) throughou t large networks , for example,

in such applications as navigation and digital communication . The “Transfer

Standard” technique [4] uses a fixed hierarchical s t ructure  in the network to

disseminate PTTI from the master node to the other nodes. However , fixed

s t ruc tu re  techniques are of l imited use when the network opera t ion has to

accommodate clock failures and communication link outages. An alternative

approach is to devise a scheme of self—organization which dynamically

allocates the network path over which PTTI information is transmitted to each

node [5 ,61. This self—organization is accomplished by assigning a rank to each

nodal clock and a demerit to each communication link , and then providing a set

of rules which enable each node to decide over which link it should accept

PTTI info rmation . Earlier versions [5 ,6] of these rules , though adequate for

the initial organization of the network, do not guarantee its re—organization

a f t e r a perturbation of its structure.

The method of Time Refe rence Dist ribution (TRD ) is a modified version of

self—organization which has been shown to organize a network as well as re-

organize it af ter  a disturbance [8]. It ensures

(a) the automatic selection of the highest ranking node in the network as

the master node.

(b) the transmission of information to each node from this master node by a

path of minimum demerit.

In addition , when the ne twork has been or ganized , each node knows its position

19.
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-1

w i t h  respect to  the  mas te r  node in the  ‘ t r ee ’ along whi ch Information is

di sseminated throughout the network. -

NETWO RK ORGANIZATION TECHN I QUE

The nodes of the network are assigned uni que ranks which ret lect  r e l a t i v e

accuracies of the i r  clocks. The l inks between nodes are assigned d e m e r i t s

which r e f l e c t  the  q u a l i t y  of the in te rconnec t ion .  The proposed techni que is

i tera t ive, and assumes tha t  between the  k ’ th and (k+ l ) s t  i t e r a t i o n s , each node

transmits to all its connected neighbors: (a) its rank , (b) the rank of the

node i t  is using as u l t i m a t e  re fe rence , (c) the  t o t a l  demer i t  of the pa th  to

its u l t imate  re fe rence , and (d) the  reading of a nodal u p d a t e  coun te r .  Each

node then applies a set of Selection Rules to i tems ( a ) ,  (b) and (c) of the

informat ion received f r o m  its neighbors and makes a t e n t a t i v e  choice of an

ul t imate  reference  and a l ink over which to receive the reference (unless it

chooses itself as the  r e f e r e n c e ).  The node then applies a set of Decision

Rules to item (d) to decide whether to use the selected re fe rence  or resort  to

self—reference . The Selection and Decision Rules are , toge ther , sufficient for

the network to organize itself under all conditions.

Notation

Let the nodes be numbered 1,... ,n where n is the total number of nodes in

the network. Furthermore , let ri be the rank of the clock at node i. The

higher the rank, the lower is the numerical value of r
i. 

No two nodes have

the same rank.

a- , 
The following variables are defined for each node i and for a given

iteration, k.

U1
(k) ~ rank of the clock which node i uses as an ultimate reference

between the k’th and (k+l)st iterations.

20.
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I
i

(k) A the  node which node i used as i ts  immediate reference

between the k’th and (k+l)st iterations.

d ij =d j i  A the demerit assigned to the communicat ions l ink between

nodes i and j when such a link exists; the larger the

numerical  value , the worse the  l ink .

D i (k) A the to t a l  pa th  demeri t  by w h ic h  node i received the

u l t imate  reference  it uses between the k’ th  and (k+l) s t

iterations .

T1(k) A the update counter  at node i for  the period between the

k’ th and (k+l)s t  i t e r a t i o n s .

C~ A the set of a l l  nodes which  are d i r e c t l y  l i nked  to node I .

This set does not conta in  the node I i t s e l f .

Note :  Symbol s which are mod if ied by a indicate a t e n t a t ive value  for

tha t  variable , i . e . ,  U 1
(k) , 11

(k)  and D ( k ) .

Selection Rules

There are three basic rules which are used to select the best t e n t a t i v e

reference for a node to use. These rules are app l ied seq uen t iall y and

determine the best tentative reference to use in the time interval between

the (k+l)st and (k+2)nd iterations on the basis of information transmitted

between the k’th and (k+l)st iterations. If a given selection rule uniquely

determines the best tentative reference , the remaining rules are not applied.

Once the best tentative reference has been determined , a set of Decision

Rules are used to decide whether this tentative reference or an alternate

reference is to be used .

Rule Sl. A node i tentatively selects its reference from the link with

that neighboring node which used the highest ranking ultimate reference in

21.
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the previous iteration . However , if t he rank of node I is equal to or greater

than the u l t i m a t e  rank used by the d i rec t ly  connected node (immediate node) ,

node i t e n t a t i v e l y  references  i t s e l f .  If two or more immediate nodes r e f e r ence

the same hi ghest ultimate rank , rule Sl is inconclusive and rule S2 must be

applied.  S ta t ing  Si in a concise mathemat ica l  manner:

Let U
i

(k)  = m in {r i, mm U .(k—i)} 1=1 ,. . . , n
ILC
i

a) if U
i

(k) = r ., then i .(k) = i and D . (k) = 0;

b) otherwise , if U
1

(k) = U
q
(k_l)~ then let I .(k) = q and

D
1

(k)  = D
q
(k_l) + d 1. if q is uni que.

Note: Rule Si fails to uni quel y select i .(k) if two or more of the

U.(k—1) term s are equal to the minimum v~iIue of U .(k) and

r .  However , Ujk) is uniquely determined .

Rule 52. From those immediate nodes which reference the same highest

ultimate rank , the link is tentativel y chosen w h i c h  passes the  reference

information over a pa t h of least demerit. However , if two or more dissemina-

t ion paths have the same minimum demerit , rule S2 is inconclusive and rule SI

must be applied to those pat is. Stating rule S2 in a concise mathematical

manner :

Suppose j r , . .  ,j are the nodes which give  a minimum value for

U
1
(k) in Rule Sl.

Let: D (k)= min{d . - 4 D . (k—i))
1 i i 11 - p - v  p

a) If the minimum is achieved by a unique L’ then 1
1

(k) = j

b) Otherwise , app ly Rule S3.

- 
- 
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Note :  Rule S2 f a i l s  to uni quel y select 1(k) if two or more paths have

the same minimum deme rit . However , D 1(k) is uniquel y determined .

Rule S3. When rules Si and S2 are inconclusive , the best t en ta t ive

re fe rence  path  is selected as the minimum demeri t  pa th  tha t  has the h ighes t

ranking immediate node. Stating rule 53 mathematically :

Suppose j 1,. . .  , j~ are nodes which a t t a in  the  minimum of Rule  S2.

Suppose that

r = min { r }

l<p- t

Then let I
~~

(k) =

Note: Rule S3 determines a unique 
~~~ 

sinc e no two clocks have the

same rank.

Decision Rules

Once a t en ta t ive  best reference has been selected by a node , it must

decide if it should use that  reference. This decision is made using three

rules which are app lied sequentially based on information supp lied by the

nodal update counte r of the given node and the ten ta t ive  best reference. If

a given rule is sat isf ied, the remaining rules are not applied . Once the

nodal clock system becomes organized , each node knows its position from the

best reference since the update counter at each node specifies the number of

links in the path to this reference.

Rule Dl. If the tenta t ive  best reference for  a given node I is a self—

reference , the node uses itself as a reference and reduces its update counter

by one unless i ts counter is already at zero in which case the counter remains

at zero. If rule Dl does not apply, rule D2 is applied. Mathematically:

- ‘ 23.
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a) if U i (k) = r
~
, then U

~~
(k) — r i, Ii

(k) I , Di (k) 0, and

( T 1
(k_ l)  — 1 if T

1
(k—l)>0

T
1

(k) =

if T~~( k — l ) = O

b) otherwise , app ly Rule D2.

Rule D 2. If the received update counter associated with the best

ten tative reference is smaller than the upda te counter at the given node i,

the node I uses the best reference received and makes its update counter

equal to the received up date counter from the best tenta t ive  reference

incremented by one. If rule D2 does not app ly,  rule D3 is applied . Hence ,

a) if T~ (k)(k_l) < T i
( k_ l ) ,  then U 1(k) = IJ .(k) , I.(k) =

D . = D1(k) and T
i
(k) = T1 (k)

(
~~

l) + 1,

b) otherwise , app ly Rule D3.

Rule D3. The node i uses itself as a reference and increments i ts

update counter by one ; i.e.,

U 1
(k) = r

i~ 
1
1

(k) = i, D1
(k) = 0 and T

1
(k) = T 1(k— l)  + 1.

It has been shown [8] ,  that these Decision Rules will cause the network

to converge to an organized structure in a finite number of iterations.

a-—
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Chapter 4

IMPLEMENTATION ALGORITHM S

The logical approach to designing programmed or hard—wired logic systems

is similar in nature [21] . In either case , the f i r s t  step consists of a

general functional partitioning . For hard—wired logic, this is known as a

block diagram. The counterpart for programmable logic is the flow chart. In

ei ther case, system definition can be made to any degree of detail .

One app roach to programmable logic is to subdivide the general system

into modules with well—defined inputs and outputs.  This gives freedom in the

manner by which the modules are implemented as long as the input and output

constraints are met.

This approach was taken In programming the process of dynamically

allocating a hierarchical information path in an interconnected system.

The process is based on comparisons made between iterations. The

iteration time intervai. is aivideci into triree phases. Each phase is

initiated in the nodal processor by ex ternally timed interrupts .  It is

assumed that the nodal processor is initially in a wait loop, waiting to be

interrupted and it will return to this state upon completion of the interrupt.

The first phase (TR) constitutes the transmitting and receiving of nodal

information by a node with its directly connected nodes. The second phase,

(TE), ends the transmission and reception phase and provides a guard band of

time between the two major phases. The third phase (TD), consists of a

selection and decision process whereby the best nodal reference is determined

for use in the time interval between this iteration and the next. In the TR

phase, the nodal information from the connected nodes is inputted on at.

25.
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interrupt basis. In Figure 2, the general flow chart for each phase of the

iterative process is shown . As can be seen , the method by which nodal

information Is stored from the channel b u f f e r s  is not specified . Also , the

method by whic h the selection and decision process is imp lemented Is not

specified. Three different algorithms have been developed , specif ying d i f f e ren t

ways in which these processes could be implemented . These are called TMAB, TMNB ,

SM , and are explained below .

4.1. THAB Algorithm

The first algorithm utilizes a storage table wherein nodal information is

stored on an attribute basis (TMAB). Storing information in this manner

entai ls  storing all information of the same type in the same block. The

memory map of the storage allocation is shown in Figure 3. The f i r s t  location

of each block contains the self—reference information of the node.

When an in terrupt is rece ived from a channel buf f e r  to input nodal

informat ion , Figu re 4 , a flag Is set in memory to indica te tha t informa tion

was received from that particular channel buffer . Information is stored in

the proper blocks by using the channel buffer number as a link. Each time a

channel b u f f e r  interrupt is received , all b u f f e rs are checked to determine if

any other channels are also ready to input data. Hence , the t ime needed to

in i t i a t e  the interrupt  service routine is minimized . For all algorithms , the

path demerit is updated before being stored.

Once all nodal information is received and loaded into the storage table ,

the best tentative reference is selected . Then a decision is made to deter—

mine if this tentative reference should be used.

-rhe TMAB selection and decision algorithm operates by checking only those

storage locations for which a flag is set. The flag for the self—reference

26.
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[~i~R interrupt Channel bu f f e r
in terrupt

[~~isab1e TR ____________________

Store ultimate
___________________ rank; update and
Load current store path demerit;
u l t ima te  rank , store rank of node;
pa th demeri t , store upda te
rank of node , and coun ter
update counte r
into output chan 

-

_______________________

nel buffers Return to trans—
mi t service rou tine

Enable channel
and TE interrupts

SI...
Wait for chan-
nel interrupts 

-

TR PHASE

TB interrupt 1 TD interrupt

•.If _ _ _ _

Disable channel 1 Disable TD
buffer and TB
interrupts

I 
Selection and
decision process

[iable TD

Enable TR
Wait interrupt

“if

I Wait

t TB PHASE TD PHASE
Figure 2 — Ceneral flowchart for the three phases of iteration process
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NODAL
INFORMATION TABL E

TABLE FLAGS

ULTIMATE
RANK S

TRAN1
(ULTIMATE RANK )

TOTAL ________________

PATH 
CURRENT TRAN 2DEMERITS 
NODAL (PATH DEMERIT)
INFO .
BEING TRAN3
USED ( RANK OF NODE)

TRAN 4
(UPDATE COUNTER)

RANK OF
EACH NODE
INFORMATION
CAME FROM

UPDATE
COUNTERS

[LINK DEMERITS

Figure 3 — Memory map for the TMAB algorithm
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Star t  of channel
interrupt routine

_ _ _ _ _

Check next chan—
nel b u f f e r

I t  I _ _ _ _ _ _

O Have all buffers L.NO jis buffer flag
been checked ? r I set ?

~,YES ~~ES

~~i Channel linksReturn to trans— I
i attributes tomit service routine i
j  corresponding block

in memory

‘IfInput u l t i m a t e
rank from channel
b u f f e r  and store
in ul timate rank
block

‘if
Input path demerit
fron t channel b u f f e r ,
add app ropriate
link demeri t and
store in total
demeri t block

“I,
Input rank of
node f rom channel
b u f f e r and store
in the nodal rank
block

‘If

Input update
counter f rom channel
buffer and store

p in the upda te
counter block

Clear buffer
flag

table flag

Figure 4 — Channel buffer interrupt routine for ThAB algorithm
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informat ion is set before the selection and decision process is started .

Thus, if no information is received from any of the directly connected nodes ,

the  se lec t ion  and decis ion process wil l  cause the node to se l f—refe rence .

This al gorithm works on the following sequence as shown in 1~igure 5. The

rank of the node Is initiall y loaded into a register. This information is

compared t o  the ultimate rank of the next node which has a flag set. If this

ultimate rank is better , all the previous flags are cleared and this ultimate

rank is loaded into the register . If the ultimate rank is worse , then the f l ag

for that node is cleared. However , if the ultimate rank is equal , the f lags

remain set. This process continues until the storage configuration number is

the number of directly connected nodes plus one. With this occurrence , the

register is stored in TRAN1. At this point , the sequence is repeated except

the total path demerit is used. When the storage configuration number is

reached agai n , the register is stored in TRAN2 and the sequence is repeated

for the final t ime using the rank of the nodes as a basis of comparison .

Since each node has a un ique rank , only one flag will remain set. The

correspond ing information is the best tentative reference. The decision to

determine if this tentative reference is to be used is generated by the

following sequence. If the best tentative reference is a self—reference ,

the node uses it and decre ments its up date counte r by one except if it is

already zero. If it Is not a self—reference , then the tentative update

counter  is compared w i t h  the current update counter (TRAN4 ) . If it is less ,

the tentative update counter is incremented and stored in TRAN4. Otherwise ,

•
1 the node will self—reference itself and increment TRAN4. In all cases , the

rank of this node is stored In TRAN3. TRAN1, TRAN 2, TRAN3, and TRAN4

cons t i t u t e  the current information that  will be transmitted to all  connected

4 3 
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nodes during the next iteration .

4.2. TMNB Al gori thm

The second algorithm utilizes a storage table in which nodal information

is stored on a node basis (TMNB). In the storage table , each connected node

is allocated a storage block for storing its nodal information. The self—

reference of this node is stored in block 0. During initialization , this

information is stored in the tentative reference storage . The memory map of

the storage allocation is shown in Figure 6.

The TMNB channe l buffer interrupt routine , Figure 7, is similar to that

used by the TMA B algorithm. The major difference is the form in which the

nodal information is stored.

The TMNB selection and decision process , Figure 8, operates on the

princi ple of comparing the information stored in the table with that stored

in the tentative reference. This comparison is accomplished by comparing

bytes until a unique decision is made determining whether the information

stored in the tentative reference is better than the information received

from the connected node . If the received information is better , it is

stored in the tentative reference . A comparison is made with only those

node blocks for which a flag is set. This comparison sequence is repeated

until the storage confi guration number is reached . Then , a decision is made

to  determine if the best tentative reference should be used. The implemented

decision sequence is very similar to that used by the TMAB algorithm. The

- , major difference is that the tentative and current nodal information is kept

in separate blocks during the selection and decision process . The TMAB

algorithm uses one block to store the tentative ultimate rank , tentative

path demerit , rank of this node and current update counter. A flag indicates

33.
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fl~
NODAL

INFORMATION TABLE

TABLE FLAGS

BLOCK 0
(SELF—REF. INFO.)

ULTIMAT E RANK ULTIMAT E RANK
BLOCK 1 _______________CURRENT

NODALTOTAL DEMERIT PATH DEMERITINFO .
BEING
USED

RANK OF NODE RANK OF THIS
NODE

UPDATE COUNTER UPDATE COUNTER

TENT. ULT. RANK

I TENTATIVE PATH
I TENTATIVE DEMERITREFERENCE 

_______________

STORAGE RANK OF TENT.
REFERENCE

UPDATE COUNTER
a-~~~~~ 

p ULTIMATE RANK

TOTAL DEMERIT BLOCK N _______________

— S

RANK OF NODE 
[ 

LINK DEMERITS

UPDATE COUNTER

Figure 6 — Memory map for the TMNB algorithm
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I Start  of channel
interrupt routine

Check nex t
cha nnel b u f f e r

.1~NO ‘Have all b u f f e rs’ NO J Is b u f f e r  f lag 
1j~~ en checked ? set ?

~
J,
YES 

Channel pointsIReturn to trans— I r~0 correspond ing[mit service routin~j  Lblock in memory

-if
Inpu t ultimate
rank form channel
and store in
memory block

~1~Input path
demerit form chan-
nel buffer , add
appropriate link
demerit and store
in memory block

~1~Input rank of
node form channel
buf f er and store
in memory block

if
Input update
counter form
channel buffer
and store in
memory block

Clear buff er

~~~~ropriat~~~~~~~~~~~~~~~~~~~Set ap
table flag

Figure 7 — Channel buffer interrupt routine for TMN B algori thm
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the location of the t en ta t ive  update coun te r .

Once a final determination has been made as to which nodal reference

will be used , the new current reference is loaded into the tentative reference

block for  use dur ing  the next iteration .

4.3. SM Al gor i thm

The third implementation algorithm that was developed is the Stack Method

(SM). This algorithm utilizes two external stacks. One stack is used to

store the rece ived nodal information . The other is used to save the pro-

cessor ’s status while servicing interrupts.

During system ini tial iza tion , the self—reference information of the node

is stored in the tentative reference storage. The memory map of the storage

allocation is shown in Figure 9.

As in the other algorithms, the SM channel buffer interrupt routine ,

Figure 10, uses the same technique to minimize the overhead involved in

servicing an interrupt. When data is inputted , the channel buffer number is

pushed onto the stack first so that it is possible to update the path demerit

before storing it. The remaining nodal information is pushed onto the stack

in reverse order since the stack organization is Last—In—First—Ou t (LIFO).

The SM selection and decision algorithm , Figure 11, follows the same

procedure as the TMN B algorithm except that a pushdown stack is used instead

of a table to store the nodal information . In both implementations, we are

able to compare information on a byte basis without any difference in the

-
‘ comparison algorithm. The SM algorithm has the advantage of fever flag and

address manipulations.

4.4. The Problem of Node Initialization

1~iring norma l operation of the network, there is an exchange of two
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PUSHDOWN STACK
FOR NODAL
INFORMAT I ON

ULTIMATE RANK
SELF—REFERENCE

TOTAL DEMERIT INFORMATION

RANK OF NODE —

UPDATE COUNTER

LINK # TENT. lILT. RANK

TENTATIVE PATH
_______________ 

TENTATIVE DEMERIT
REFERENCE
STORAGE RANK OF TENT,

REFERENCE

UPDAT E COUNTER

___________________ 

LINK I/

I ULTIMATE RANK

CURRENT PATH DEMERIT

STACK INFO. RANK OF THIS
GROWS BEING NODE

_______________ THIS UPDATE COUNTER
ULTIMATE RANK DIRECTION

TOTAL DEMERIT

RANK OF NODE

— UPDATE COUNTER LINK DEMERITS

LINK #

Figure 9 — Memory map for the SM algorithm.
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[~tart of channel
L in t e r r u p t  rou t ine

)

~~Check next  chan-
nel buf fer

NO Have all b u f f e r sL  NO buf f e r  f lag
been checked~~~J~ Lset ?

~J,
YES 

_ _ _ _ _ _ _ _ _ _ _

Return  to trans— 1 Push channel li
mit service routine onto stack

‘ii’
Inpu t upda te
coun ter in forma tion
and push onto the
stack

~1~Input rank of
nei ghb or nod e and
push onto stack

Input the path
demerit , add
appropr ia te  l ink
demeri t  and push
onto stack

fii~put the
u l t i m a t e  rank and
push onto stack

Cl ear bu f f e r
f lag

Figu re 10 — Channel buffer in te r rupt  routine for SM a lgor i thm
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Start of
decision process

-1
Does stack pointe r 

YES To Set address
poin t to beg inning ) pointer
of the stack

Set add ress
pointer to begin-
ning of tent. ref.
storage

Pop sta~L~ into
register

I Increment addres~ I
I I ( )  I Compare reg. to (<) ____________________I pointer ~-. i
‘- ‘ I tent. storage Pop and load into

____________________ 
the remaining info.

Set poin ter to in tha t block into
sta rt of next ten t .  r e f .  storage
block of info.
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Figu re 11 (Continued)
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_____________________ Set add ress

~i~ ad reg. into pointer to begin—
current ult. node ning of tent. ref.
reference stora e

Load cu rrent Load rank of this
[de merit with 0 J node into some re

Load tent.  ( )  Compare reg. to (>)
update counter tent .  u lt. rank
into reg. (<)

I ___________________ 
YES Is in i t i a l i za t ion

~
<) Compare upda te ( )  ~i~ ad current fla set ?

counter with 0 ~update counter NO 
Iwith reg. J Load tent. update

Decrement reg. counter into re
and store in cur-
rent update counter ,(-‘.z) Compare reg. with (>)

~~ 
-( 

_________________ 
current update

Load tent .  u l t .  counter
node ref. into J__ () I
current ult. node Load current ult.
referenc~ J rank with rank of

I this node
f Load tent. I

demerit into cur— Load current
rent demerit demerit with 0

Increment tent .  Increment current
update counter an update counter
store in current
update counter

Load current info
block into tent.
ref. block

Return to f End decision
initialization YES Is initialization

1 NO .Jprocess, return
routine r flag set ? 

I ~~~~ wait loop

?i~ur. 11 — Selection and decision routine for SM algorithm
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kinds of informat ion between the nodes: ( i) clock t ime , which may be ex-

changed continually, and (ii) ‘reference ’ information (used by each node to

select its reference for clock t ime), which is exchanged at less frequent

intervals .  The implementa t ion  stud y has been concerned w i t h  the  processing

of the  l a t t e r  in fo rma t ion , and the initialization problem arises in this

regard . In the i t e r a t i ve  scheme of re ference  selection , the  operations at

each node for one iteration can be d ivided into three phases followed b y a

wa i t i ng  phase , as shown in the t i m i n g  diagram below.

4— T = one iteration >5

TR TE TD WAITING 1

t ime

In the TR phase , the node transmits its reference information to its

neighbors and receives similar information from them. The TE phase is a

guard band be tween the end of the TR phase and the start of the TD phase ; in

the TD phase the node processes the info r mation rece ived in the TR phase and

decides on a reference to use until the next iteration. The node then waits

for the next transmission from the other nodes.

In normal operation, when all the nodes are able to refer to a common

t iming source , the d i f f e r en t phases are more or less in alignmen t a t all the

nodes. Allowing for a cer tain guard band ar ound the phases to take accoun t

of propagation time between nodes, the same timing diagram is then app licable

to all the nodes. It is assumed here that the iteration interval T is much

longer than propagation time between nodes and also much longer than

(TR + TE +TD).

Suppose a new node (which knows the iteration interval 1) wishes to
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enter the network at the  ins tan t  shown b y the ar row.  Tho i n i t i a l i za t i on

pr oblem is tha t of developing an alg ori thm which  enables the new node to

al i gn it s TR , TE and TD phases with those of the network. A more general

aspec t of the problem is the es tabl ishmen t of such alignmen t when all the

nodes are ‘new ’ nodes, i.e., for the initial organization of the network.

What remains to be discussed is an algor i thm for  the in i t i a l i za t ion  of

the nodal processor when that node is put into operation in the network. This

al gori thm , Figure 12, is organized into two parts .  The f i r s t  part consists of

program and storage i n i t i a l i z a t i o n. I t programs the peri pheral in terfaces f or

t r a n s f e r s  and a l locates  storage for  the  received nodal information . After

th i s  is accomp lished , the processor goes into a wait loop to which all phases

return during regular operation. The second part initializes the node ’s

reference so that all nodal processors in the network in i t i a t e  the same phase

wi th i n a given guard band of t ime .

This process is accomplished by an interrupt routine which is initiated

by pushing of an initialization button on an operator ’s console.

1. When the routine begins, an external counter is started and the new node

starts on self—reference , sets its counter to zero and begins transmitting its

t iming and reference information to its neighbors. A message is included to

the effect that the node is in its initialization phase.

A node disregards reference information received from nodes in their

initialization phase unless

(i) the node is itself in the initialization phase, and

(ii) all the reference information it receives comes from nodes In

their initialization phase.

2. The node then waits for a time T to collect Information from all its

44.
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Program and In itial iza tion
storage initial— Interrupt
izat ion

Set i n i t i a l —
Wait  loop ization f lag

PROGRAM INITIALIZATION Self—reference
the node w i t h
update counter—O

Output nodal
information to
channel b u f f e r s

Enable channel
buffer interrupt

‘If
Wait for m it—
ia l iza t  ion
counter to be Set

Disable channel
b u f f e r  i n t e r r u p t

.1~Selection and
decision process

\If
Clear initial-
iza tion f lag

‘I’Disable
initialization
i n t e r r u p t

Enable TR
interrupt

End of in terr up t
routine , return

a- to wait loop

NODAL REFERENCE
INITIALIZATION

Figure 12 — Initialization routines

1 45.

, 
--
~~~~~~~ ! — — —a- — 1~~~~ ~~~~~~~~ 

— - -
~~~~

-
~~~~~~~ - a- ,!___~

__
~_:__ _ _ _  -----a- -a- -- --~~ - 

- .  -



neighbors. The waiting period is controlled by the Initialization counter

which causes a flag to be set when the period is over. Using its own refer-

ence information and other admissible reference information , it then selects

the best tentative immediate reference. If this is not self—reference , it

sets its counter to one more than the largest of all the counter readings

received by it and uses this best tentative reference . If the best reference

is self—reference , it keeps its counter at zero and continues on self—

reference.

3. (a) If the best reference is not self—reference the node initiates its

iterations by starting its next TR phase at the time it receives the next

transmission from this best reference .

If the best reference is not in its initialization phase , the node then

cancels the “initialization” message from its transmission ; otherwise , it

continues to transmit it over the next iteration .

(b) If the best reference is self—reference , but at least one of its

neighbors is not In the i n i t i a l i z a t i o n  phase , the  node times its TR phase to

begin when the next transmission is received from the highest ranking neighbor

tha t is not in the In i t i al izat ion phase; it  then cancels the “initialization”

message.

(c) If the best reference is sel f—reference and all its neighbors are

-- - -  — also in their initialization phase, the node Initiates its iterations

arbi t rar il y but conti nues to t ransmit  the “ in i t ia l iza t ion” message .

I t is clear now that  a new node discontinues i ts “ini tializa t ion”

message only when it receives information from a node which is not in the

initialization phase. Once the initialization phase Is over, the iterative

process of transmission and reception at each node is controlled by the

46 .
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local clock.

The al gori thm is designed to accomplish the proper initialization of new

nodes joining an existing network . The same algorithm can be used when the

whole network Is being organized ab initio , provided one of the nodes , say,

the master node , is des igna ted as alr ead y initialized (i.e., does not transmit

the “initialization” message). This node is then the “existing” network that

is joined by the other nodes.

--
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Chap ter 5

A FEASIBILITY DESIGN OF NODAL PROCESSOR

In this chapter , a sample design of a nodal processor Is implemented

using a c u — r e n t  s t a t e — o f — t h e — a r t  microprocessor. In the previous chapter ,

three d i f f e r e n t imp lementatIon algorithms were discussed . The TMNB and SM

algorithms have a similar structure , i .e . ,  the ultimate rank , path demerit

and node rank could be concatenated together. If a microprocessor had a

data path the width of the concatenation , only one comparIson would have

to be made on each set of received nodal information to determine the best

tentative reference . However , since typical microprocessor data paths are

relatively narrow , a compar ison can onl y be made on part of the total

concatenat ion at a time . The TMA B algorithm in contrast has a structure

wherein the same type of attribute from each received node was stored in the

same data block. The algorithm used flags to keep track of the comparison

results . In terms of the complexity of the programming required to Implement

each algori thm , the TMA B algorithm is the most complex. This comp lexi ty is

caused by the manipulations needed to direct  the received informat ion to their

proper a t t r i bu t e  storage block and by the flag manipulations required to

control  the algori thm. The TMN B algorithm ranks second in complexity.  Again ,

the complexity is a result of the flag man ly -iations needed to contro l the

al gorithm. The SM algori thm is the simplest of the algorithms which were

developed. The s implic i ty  results from the use of a stack to store the

received nodal information. When information is received , it is simply pushed

onto the sLack and when comparisons are made the information is easily popped

out of the stack. In this approach , flags are not needed . The only
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requirement is to determine when the stack Is empty. For the sample design,

the implementatio~ _~j~gorithm will be the SM algorithm.

5.1. Feasibility Design

Having decided on the algorithm , it must be shown by way of a sample

design that it is feasible to implement it using a curren t microprocessor.

The number of parameters that vary between microprocessors is large . In

addition to the typical parameters that characterize all integrated circuits [9],

such factors as processor architecture , system organization and software must

also be investigated to determine the proper mi roprocessor for a particular

application .

In Tabl e 3 [22], a general comparison is made between selection criteria

and their effect on the system design. For some app lications , the existence

of one or more features of a particular microprocessor can immediately decide

the question of which microprocessor to w-e . In most cases , however , since

several microprocessors may be comparable for an app lication , a different

approach is needed to evaluate [23] the microprocessors. This too l is called

a benchmark program. A benchmark program is a method by which the arichitec-

ture of different processors can be evaluated by measuring their performance

when executing specific functions . These functions are defined to characterize

the app lication the processor is expected to perform. For each of the con—

tenders , a ben chmark program is wr itten and performance parameters such as total

execution time , memory space occup ied and maximum I/O da ta ra tes ach ievable ar e

observed and compared. Thus, the performance of competitive microprocessors

- : can be monitored under actual operating conditions.

Finding a suitable microprocessor for this feasibility study consists of

a- dete rmining what specific features are needed to Imp lement the SM algorithm .

‘-a-
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SELECTION C R I T E R I A

Mi . cr~processor Supp~Iier

Reputation

Microprocessor availability

Documentation and application notes

Software commi tment

Complete  mic rocompute r  cards or systems

P r i c i n g  and second source

Hardwar e

Power supply requi remen ts
Clock and cycle time

Semiconductor technology

Interfacing requirements

Packaging
Microprocessor Architecture

Word leng th

Addressing capab i l i t y

Reg isters , ALU , stack instruction set ,
addressing modes and I/O

Micro processor Sys tem

Bus con trol capabil ity

Di rect memory access
In ter rupts

p

Compa tible fun ctions
Memory
Buf fe r s
Clock generators
Input/Output
Communications interface

Table 3 (Continued)
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Microprocessor Softwa re

Stand—alone assemb ler , edi tor , debug

a- 
monitor

Cr oss assembler for  ba tch and t imeshar ing

Sof tware documen tation

Simula tor

H igher level language

- a- .-

Table 3 (Cont inued)

-
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SYSTEM DESIGN FACTORS

Is the m i cr o p r )( - v~-~~or in production and

a- available in quantities ? The longe r a
product Is available , t h e better the
pr ic  1mg.

Must be adequate to support design

Proves dedication to microprocessor markets

F l e x i b i l i t y  in e a r l y  ha rdware  and s o f t w a r e
development

Cost effective with competition

Can increase total system cost

Dete rmines speed and necessary c i rcu i t
des ign fo r  clock generator and timing

Is it a proven process used for other
producable  p roduc t s?

TTL or CMOS compatibility or special

No. of packages required impacts PC board costs

Makes some ap p l ica ti ons more e f f i c ien t

Enough memory for presen t and future

All these factors result in program efficiency,
which a f f e cts amoun t of memory and execution
speed or pe r fo rmance for  a particular application .

Amount of external logic necessary to efficiently
control peripheral devices

Needed to support high speed I/O devices

Necessary in real—time applications or for
more efficient I/O

p
Can provide fo r  easily assembled minimum systems
or medium size systems with fewer discrete logic
functions for bus control and buffering

Table 3 (Continued)
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Useful in microc omputer development system during
early desi gn phases
Timeshare only f e a s i b le  on smo f 1 project. Batch
assembler on minicomputer is very effectiv e

R e q u i r e d  f o r  a good start; macro—assembler very useful

Good s t a r t  u p ,  too ; food for small effort

la- ossihi e documentation and productivit y benefits ,
hut assembly language dominates

Table 3 — General comparison between selection criteria and their
effect on system design.
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The first necessary feature is an extensive pushdown stack to store

data. An instruction set with instructions for manipulating this pushdown

stack is also needed. Another important consideration is the ease of inter-

fac ing with the external channel buffers. Even more Important is the

capability of the microprocessor to service many sources of interrupt

e f f i c i e n t l y .

The extensive pushdown stack must be provided for externally. This can

be accomplished in three different ways. The first is to have a micro-

processor with built—In hardware for imp lementing the pushdown stack. The

second is to use software to implement the stack and the third way is to

implement it using microprogramining. In all , the f irs t al terna tive is the

easiest to use.

Looking at the currently available microprocessors , only the Intel

8080 (24) and Motorola M6800 microprocessors [25] have an Internal hardware

mechanism for implementing external pushdown stacks. Hence, only these two

microprocessors will be considered as candidates for the design . A comparison

of the capabilities of each device was made to determine which microprocessor

is better suited for this application .

Both microprocessors have instructions dedicated for manipulating their

external stacks. These microprocessors also have programmable peripheral

interfaces  which ease the interfacing problem.

The peripheral interface for the Intel 8080 has 24 1/0 pins which may be

programmed in two groups of twelve and can be operated in three modes. The

peripheral interface adaptor (PIA) for the M6800 provides 16 bits of Inter—

face and four control lines at addressable locations in standard system memory.

The I/O bits are accessed in two 8 bit words. Each bi t  is individually

54.
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programmable as an input or output . The operating characteristics of the PIA

are dynamic. These characteristics are established at system reset and can be

modified at any other time by writing from the processor into registers in the

PIA that control its operation .

To connect devices to the Intel 8080 bus s t ru c t u r e , usIng a standard

i n t e r f a c e , requ i res  a device called the system controller and bus driver.

This device generates all necessary control signals and prov ides h igh sys tem

TTL fan—out. The M6800 however , allows up to 11 devices to be directly

connected to its bus structure before buffering is needed. A fundamental

characteristic of the bus structure is that the processor references all bus

components as memory locations. All connected devices have the same inter-

face as memory and no I/O control lines are needed on the bus.

In Chapter 2, the interrupt structures of both microprocessors were

discussed.

After looking at the various capabilities of both microprocessors , the

M6800 was better suited for the sample design . Although both processors have

similar capabilities , by looking at the result of the benchmark progra ms in

Chap ter 2 , it is evident that the M6800 is genrally more efficient. This

shows that even though both processors have the same instruction cycle , the

a-~r structions of the M6800 are more powerful in what they can accomp lish.

Figu re 13 is a block d iag ram of a nodal pro cessor des ign using the M6800

microp rocessor. The processor is controlled by interrupts generated by

ex ternal ha rware and PIA ’s which are the interface between the microprocessor

and the channe l buffers . What Is not shown in the block diagram is the

buffering needed if more than 11 devices are connected to the busses. Bus

drivers and receivers are available which allow up to 50 receivers for
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Figure 13 — Block diagram of nodal processor.
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each driver.

Figure l4a is a block diagram of a PIA.

During system initialization , it is necessary to program the con trol

registers located In the PIA which control the data flOw thru the interface.

Figure 14b gives a general sequence of ins truc tions wh ich programs the PIA

for input thru PAO—PA7 and output thru PBO—PB7 . CRA , CRB , DRA and DRB refer

to general symbolic add resses of the internal registers. The specific hexa-

dec imal numbers $2F and $24, program the CAl control line to act as a data

read y signal for which the PIA generates an interrupt. The CA2 line acts

as a data acknowledge signal which is generated when data is input. The CB1

line signals the external device when data is ready to be output. The CB2

line generates an acknowledge signal when the data has been accepted .

Interrupt requests are processed through the use of external priority

hardware and internal software polling. In addition , a programmable mask

reg ister is prov ided wh ich can disable each source of inter rup t ind iv idua ll y.

Whem a normal Interrupt request occurs , the microprocessor addresses locations

FFF8 and FFF9 and loads the con ten ts in to the progr am coun ter . The progr am

counter then contains either the starting address of the interrupt routine

or the address of a sequence of reg isters which are used for software polling.

External priority hardware causes each interrupt received to go to a different

t r ap location in memory. Each trap location contains a vector to the s p e c i f i c

interrupt routine. All the interrupts are priority encoded . The channel

buffer interrupt also includes a software polling sequence that determines

which channel buffer is to be serviced.

Append ix A contains programs coded for the M6800 microprocessor. All

three phases of the SM algorithm are presented. These programs should not
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Figure 14 — (a) Block diagram of a PIA, (b) PIA initialization program
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be considered as an implementation since they have not been assemblc.J to

check for coding errors or simulated to check for errors in the programming

of the algo rithm . However , they are sufficient as a means of establishing

a reasonable timing and storage estimate. The timing information consists

of an estimate of the time needed to complete each phase on a wors t case

basis.

Two basic assumptions were made for all of the routines. First , all

direct addressing was in the extended mode. Second , a data acknowledge

signal from a device is always generated within 4 ~s.

5.2. Estimates of Processing Time

The time required for the transmit and receive phase consists of the

time required for  the TR routine plus the time needed for inputting nodal

information from N channel buffers. An assumption made with regard to the

channel buffer routine was that only one buf f e r  was serviced per interrupt

request. Equation (la) determines the time needed to complete the TR routine

as a function of the N nodes to which it is connected . The unit of time is

the microsecond .

tTR 
— N(4l7) + 71 . (la)

Equation (lb) determines the time needed to service the channel buffer routine

N times.

a- tC~~ BUF N 2 (54) + N(558) (lb)

Equation (lc) Is the time required to complete the transmi t and receive phase

for N connected nodes.

T
1 

- t TR + tCHNBUF 
(lc)

The time needed for the second phase consists of the time required t-n
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complete the TE routine . Equation (2) represents this time as a function of

N connected nodes.

— N( 25 )  + 42 . (2)

The time requirement for the third phase consists of the time needed to

complete the selection and decision routine for N connected nodes. An

assumption is made that the first 5 bytes of the information received from

each node a re the same. Also the first byte of the rank of each node is

equal. Since all ranks are unique , the time estimate equation of the third

phase will only be valid for a maximum of 256 connected nodes. During the

selection process, two different cases arise in determinIng the worse case

time. The first case Is that the current reference is better than each of

the N connected nodes. It is given by equation (3a).

= N( l92)  + 14 . (3a)
1

The second case is while sequentially testing the nodes, the information of

the next node is better than the previous node. The time required is given

by equation (3b).

~~~ = N(252)  + 14 . (3b)
2

Clearly, equation (3b) is the worst case for the selection process.

During the decision process three different worst case possibilities

exist. Case 1 consists of the node self—referencing itself since the tenta—

tive ultimate rank is equal to the rank of this node. The time required is

given by equation (3c).

— 2 3 0. (3c)

For Case 2, the tentative and current update counters are compared , with the
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tentaLve up date counter being greater than the current counter. The time

required for this case is given by equation (3d).

tDP — 280 . (3d)
2

Case 2 Is the aituation wherein the current counter is greater than the

tentative update counter. The time required in this case is given by equation

(3e).

t~~ = 321 . (3e)
D

3

Clearl y, Case 3 is the worst case. Therefore, the time required to

complete the worst case third phase is given by equation (3f).

T
3 

= N (252)  + 235 . (3f )

Table 4 gives a time estimate for completing each phase of the Iteration

process for two different numbers of nodes that are connected to a single node.

These estimates give an approximate upper bound on the time needed to complete

an iteration.

TIME PER PHASE NUMBER OF CONNECTED NODES (N)

N = 1 0  N = 1 00

14621 ps . 631571 ps.

292 ps. 2542 ps.

T
3 

2855 ps . 25535 is.

TOTAL 17.8 ms. .66 s.

Table 4. Phase completion time estimates

5.3. Estimates of Needed Storage

An estimate of storage needed , both ROM and RAM , as a func tion of the

number of connected nodes is an essential parameter for system design. The

61.

— =—-- -.-~~~~~~a-_____ ;-
~~~~~~~~~

• - ~~~~~~~~~~~~~~~ a- —-- --a-.-. _ - - - ~~.. ~~~~~~~~~~~~~~~~~~~ 
“

~~~ 
.—=----—

~~~~~

—.-- -



storage requirements f or the program initial iza t ion , nodal reference

initialization , TR , channel buf f e r , TE and ID Interrupt routines are not

dependent on the number of connected nodes N. However , the number of link

demerits and the  storage configuration number are dependent on the number of

connected nodes.

Since the interrupt routines are the same for each node , an iden tical

ROM could be masked . However , since the link demerIts , storage con f i g ura t ion

number and rank of the node are d if f e r e n t f or each node , a progra mmable ROM

should be used . An estimate of the required PROM storage for this data is

given by equation (4).

B1 = N + 5 .  (4~

The estimated bytes of storage needed for the interrupt routines plus

constants is given by equation (5).

B
2 = 608 . (5)

The byte requirements for RAM storage must include space for the

va r iables , the current and tentative nodal information , a stack for sub-

rou t ines and interru pt linkage and a da ta stack which is a func t ion of the

connected nodes. This estimate is represented by equation (6).

B3 
— lON + 38 . (6)

Table 5 is an estimate for the amount of each type of storage required .

PROM storage is represented by B1, ROM storage by B2 and RAM storage by B3.

TYPE OF STORAG E N UMBER OF CONNECTED NODES

N — b  N = l O O

B1 (PROM) 15 bytes 105 bytes

B
2 

(ROM) 608 bytes 608 bytes

B
3 

(RAN ) 138 bytes 1038 bytes

Table 5. Storage estimates for routines

62.

O 
~~~~~~ a-~~~~ a- _a-

~ •~ ~~~~~~~~~~~~~~~ 
a- _~ - 

a-



When a new node is brought into a network , i t is necessary to make phys ical

changes to each of the nodes that will be connected to the new node. These

changes include increasing the number of channel buffers and RAM storage and

also the modification of the data that is stored in the PROM. To provide a

node with the capability of making these changes without disrupting its

opera t ion , each node could have two nodal processors. One processor will be

on—line at all times. If any mod i f i ca t ions  are necessary, they are done on

the processor that is off—line. To bring the modified processor on—line , the

following procedure is followed . The modified processor waits until the on-

line processor has finished the TD interrupt routine . It then initialIzes

its status to the current status of the on—line processor. Once initialized ,

the processor then switches itself on—line and the other processor off—line .

An alternative approach to this problem is to shut down the processor to

make any required changes. During the period when changes are being imple-

men ted , the timing at a given node is allowed to run freely. Since the local

clocks at a node should be highly stable, they should be able to maintain

t iming in a flywheel mode for a sufficient period of time. Once the required

changes have been made to the nodal processor , its operation is resumed by

initiating the initialization procedure that was previously described .

h3 . 

a -~~~~~ -~~- - -  

- - --



Chapter 6

CONCLUSION

In essence, this study has demonstrated the feasibility of using a

microprocessor to dynamically allocate information paths in a Time Reference

Distribution (TRD) system. The microprocessor approach was investigated since

it represented the best design tradeoffs from the reliability, versatility and

economic viewpoints.

Three basic organizations were developed f or implementing a TRD nodal

control processor. A comparative evaluation of these approaches indicated

tha t , al though all these techniques are feasible, the stack oriented

organization presented superior design alternatives. This design was then

pseudo—encoded for a currently available microprocessor to determine the PROM,

ROM, and RAN memory requirements, since these usually represent the dominant

cos t and reliability factors. Execution time estimates were also generated

from this encoding. The sample design has shown that the addition of new

nodes into the network does not require extensive redesign of the nodal

processor.

Once initial design costs have been paid , a microprocessor nodal system

to handle up to one hundred interconnecting nodes can be constructed for

• ..P ’ 
under $100.00 based on todays prices for microprocessors , memories and inter-

face devices. Even at this low price , the system would be easily reprograi~ i—

able by simply changing the ROM or PROM chips. Once past Infancy failure, the

integrated circuit chips, themselves, are infinitely reliable in comparison

to the failure of interconnections. However, a system composed of a micro—

processor, 1024 words of RAM, 1024 words of ROM, a programmable 15 bit
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interface, and 256 words of PROM consists of onl y seven in tegra ted circuits

and one power suppl y and hence , represents a rather minimal number of inter-

connections.

Finally,  when one considers other functions which must be performed at

a communica tions node , the microprocessor approach becomes even more

attractive . For example , switching, mon itoring,  etc. all readily lend

themselves to microprocessor implementations. Hence, the overal l  life cy cle

costs can be reduced and the r e l i ab i l i ty  increased by incorporating many

nodal funct ions into one microprocessor system .

The following areas are suggested for investigation in future studies of

the dynamic allocation process:

1) A hardware simulator should be built with an interconnection to a

minicomputer . This would allow the algorithms that were developed

to be evaluated under controlled conditions in a simulated ne twork

environment.

2) For a digItal communications network , useful measures for path

demerits and nodal ranks should be developed . Using these measures ,

methods for making automatic time corrections should be studied .
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APPENDIX A

PROGRAMMING LISTINGS
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* *
* TR INTERR UPT *
* *
* INTERRUPT ROUTINE FOR THE TRANSMISSION OF THE NODE’S *
* CURRENT REFERENCE TO EACH OF ITS OUTPUT CHANNEL *
* BUFFERS. *

* *
TR STS STK STORE STACK POINTER

CLR OFFSET
CLR OFFSET+ 1

NXBUF LDX #0 INITIALIZE INDEX REGISTER
LDA B #8 LOAD WORD COUNT

OUT LDA A CURANK ,X INPJT BYTE FROM CURRENT INFO BLOCK
INX
TXS SAVE INDEX REG IN STACK POINTER REG
LDX OFFSET
STA A ORB ,X STORE BYTE IN OUTPJT BUFFER

TEST TST CRB ,X WAS BYTE ACCEPTED?
BPL TEST IF NO ,TEST AGAIN
DEC B DECREMENT WORD COUNT
TSX RELOAD INDEX REG
TST B IS TRANSFER COMPLETE
BNE OUT IF NO , TRANSFER NEXT BYTE
LDA A OFFSET+1 IF YES , SET UP POINTER
ADD A #2 TO NEXT CHANNEL BUFFER
STA A OFFSET+l
LDA A OFFSET
ADC A #0
STA A OFFSET
LDX CONFIG LOAD CONFIG. NUMBER
CPX OFFSET HAVE ALL CHANNEL BUFFERS BEEN LOADED?
BGT NXBUF IF NO, OUTPUT TO NEXT BUFFER
LDS STK RELOAD STACK POINTER
LDX #NODES
STX PRSTSP
LDA A ETECB LOAD INTERRUPT MASK
STA A MSKD R STORE IN MASK REG

MASK1 TST MSCRB TRANSFER COMPLETE?
BPL MASK 1
TST INTFLG IS INITIALIZATION FLAG SET?

- P BPL INTR
RTS IF YES, RETURN TO INITIAL ROUTINE

INTR RTI IF NO , RETURN AND WAIT FOR CHANNEL
BUFFER AND TE INTERRUPTS.
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* *
* CHANNEL BUFFER INTERRUPT *
* *
* INTERRUPT ROUTINE TO INPUT INFORMATION FROM CHANNEL *
* BUFFERS. THERE IS A CHANNEL BUFFER FOR EACH DIRECTLY *
* CONNECTED NODE . *

* *
CHNBUF CLR OFFSET

CLR OFFSET+1
STS STK STORE PRESENT STACK POINTER
LDS PRSTSP

NXTCHL LDA B #10
LDX OFFSET LOAD WORD COUNT
TST CRA ,X TEST FLAG OF INPUT BUFFER
BPL CHNNL IF NOT SET , CHECK NEXT BUFFER .

INPUT LDA A ORA ,X IF SET , INPUT BYTE
CMP B #10
BNE BlO
STA A LNKPNT

BlO CMP B #9
BNE B9
STA A LNKPNT +1

89 PSH A PUSH ONTO STACK
DEC B DECREMEN T WORD COUNT
BEQ CHNN L IF WORD COUNT IS 0 , CHECK NEXT BUFFER

LOOP TST CRA ,X ;)ETERMINE IF NEXT BYTE IS READY
BPL LOOP
CMP B #4 IS NEXT BYTE ,M.S. BYTE OF DEMERIT?
REQ PTHD EM IF YES , BRANCH TO PTHDEM
CMP B #3 IS NEXT BYTE,L.S. BYTE OF DEMERIT?
REQ ADDLNK IF YES , BRANCH TO ADDLNK
JMP INPUT

PTHDEM LDA A ORA ,X LOAD M.S. BYTE OF DEMERIT INTO A REG
CEC B
JMP LOOP

ADDLNK DEC B
STA B WRDCNT
LDA B ORA , X LOAD L. S. BYTE OF DEMERIT INTO B REG
SIX INDX
LDX LNKPNT
ADD B LINK ,X ADD LIN K DEME RIT TO PATH DEMERIT -

PSH A LOAD UPDATED DEMERIT ONTO STACK
PSH B
LDX INDX
LDA B WRDCNT
JMP LOOP

CHNNL LDA A OFFSET+1 DETERM INE THE ADDR OF N EXT INPUT BUF.
ADD A #2
STA A OFFSET+I
LDA A OFFSET
ADC A #0
STA A OFFSET
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LDX CONFIG HAS ALL INPUT BUFFERS BEEN CHECKED?
CPX OFFSET
BGT NXTCHL IF NO , CHECK NEXT BUFFER
STS PRSTSP
LDS STK IF YES , RETU RN FROM ROUTINE AND WAIT
RTI FOR NEXT INTERRUPT

~~ —S

I

I

—
- 
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* *
* TE INTERRUPT *
* *
* TRANSMIT END INTERRUPT ROUTINE - CLEARS ALL CHANNEL *

* iNPUT BUFFER FLAGS AND DISABLES CHANNEL BUFFER *

* INTERRUPTS . *

*

TE CLR OFFSET
CLR OFFSET+1
LDX OFFSET

CLEAR STA A ORA ,X CLEAR INTERRUPT FLAGS FOR INPUT
CPX CONFIG CHANNEL BUFFERS . HAVE ALL FLAGS BEEN
REQ RETURN CLEARED?
INX
INX
JMP CLEAR
TST INTFLG IS INITIALIZATION FLAG SET?
BMI EXIT

RETURN LDA A ETD
STA A MSKDR LOAD MASK REG

MASK2 TST MSCRB
BPL MASK2
RTI

EXIT LDA A DCB DISABLE CHANN EL BUFFER INTERRUPTS
STA A MSKD R

MASK3 TST MSCRB
BPL MASK3
RTS

L 
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*

* TD INTERRUPT
*

* THE SELECTION AND DECISION INTERRUPT ROUTINE IS *
* USED TO DETERMINE THE BEST MODAL REF . TO BE USED *

* DURING THE NEXT ITERATION TIME INTERVAL . THE ROUTINE *
* USED MODAL INFORMATION THAT WAS STORED IN A STACK *
* DURING THE CHANNEL BUFFER INTERRUPT ROUTINE *

*

TD STS STK STORE INTERRUPT SP
LOS PRSTSP LOAD SP WITH ADDR OF STORAGE STACK

LOOP1 LDX 1/TENT LOAD INDEX REC—START ADDR OF TENT. REF
NEXT PUL A LOAD A FROM STACK

BEQ CASE1
BGT CASE2

LOOP2 CPX #TENT+10 TEST FOR END OF BLOCK
BEQ EMPTY
STA A STORE INFO OF THAT BLOCK INTO TENT. REF
INX
PUL A
JMP LOOP2

CASE2 CPX #TENT+lO SET SP TO START OF NEXT NODE ’S INFO
BEQ EMPTY
INX
INS INCREMENT SP
JMP CASE2

CASE1 INX INCR. ADDR POINTER
JMP NEXT

EMPTY LOX #NODES IS STORAGE STACK EMPTY?
STS PRSTSP
CPX PRSTSP
BLE DECISN
JMP LOOP 1

DECISN LDX #TENT LOAD INDEX REG - START OF T E N T . R E F

LDA A SLFREF
LDA B SLFREF+1 DETERMINE IF BEST TENT REF IS SELF-REF
CMP A X
BNE NSREF
INX
CMP B X
BEQ SREF

NSREF TST TNTFLG
BMI N EWCUR BRANCH IF INITIAL.  FLAG IS SET
LDX #TENT+6
LDA A X LOAD IN TENT UPDATE COUNTER
INX
LDA B X

- - CMP A CCOUNT COMPARE M.S. BYTE OF CURRENT COUNTER
BLT NEW CUR
BGT TGTC

~~ CMP B CCOUNT+1 L .S. BYTE

BLT NEWCUR
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TGTC LDA A SLFREF
LDA B SLFREF+1
STA A CURANK LOAD CURRENT lILT . RANK WITH RANK OF
STA B CURANK+ 1 THIS NODE
CLR CDEMRT LOAD CURRENT DEMERIT WITH 0
CLR CDEMRT+1
LDX CCOUNT
INX
STX CCOUNT INCR . CURRENT UPDATE COUNTER
JMP LDTENT

NEWCUR LDX 1/TENT
LDA A X
INX
STA CURANK LOAD TENT LILT NODE REF INTO CURRENT
LDA A X ULT REF
INX
STA A CURANK-+-1
LDA A X
INX
STA A CDEMRT
LDA A X
INX
STA A CDEMRT+1
LDA A #1
ADD A X+l INCR. TENT UPDATE COUNTER
CLR B
ADC B X
STA A CCOUNT+ 1 STORE IN CURRENT UPDAT E COUNTER
STA B CCOLJNT
JMP LDTENT

SREF STA A CURANK STORE RANK OF THIS NODE IN CURRENT
STA B CURANX+ I ULT NODE REF
CLR CDEMRT SET THE CURRENT DEMERIT TO 0
CLR CDEMRT+1
LOX TENT+6 LOAD TENT UPDAT E COUNTER INTO INDEX REG
CPX #0 COMPAR E TO 0
BEQ STORE IF=0 , BRANCH TO STORE
DEX OTHERWISE , DECREMENT

STORE STX CCOIJNT STORE IN CURRENT UPDATE COUNTER
LDTENT LDX #TENT

LDA A CUR.ANK STORE CURRENT INFO BLOCK INTO TENT
LDA B CURANK+ 1 REF BLOCK
STA A X
INX
STA B X
INX
LDA A CDEMRT
LDA B CDEMRT+ 1
STA A X
INX
STA B X
INX
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LDA A SLFRFF
LDA B SLFREF+ 1
STA A X
INX
STA B X
INX
LD~ A CCOUNT
LDA B CCOUNT+1
STA A X
INX
STA B X
LDS STK
LDA A CTR
STA A MSKD R LOAD INTERRUPT MASK REG

MASK4 TST MSCRB
BPL MASK4
TST INTFLG IS INITIALIZATION FLAG SET?
BMI INT
RTI IF NO , RETURN FROM INTERRUPT AND WAIT

INT RTS IF YES , RETURN TO INITIALIZATION ROUTINE
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* *
* INITIALIZATION INTERRUP T *

* *
-: * THIS INTERRUPT ROUTINE INITIALIZES THE NODE’S *

* REFERENCE IN THE NETWORK *
* *
INTIAL LDA A #1

STA A INTFLG SET INITIALIZATION FLAG
LDA A SLFREF SET NODE ON SELF-REFERR
LDA A SLFREF SET NODE ON SELF-REFERENCE
LDA B SLFREF+1
STA A CURANI(
STA B CURANK+ 1
CLR CDEMRT
CLR CDEMRT+1
CLR CCOUNT
CLR CCOUNT+1
JSR TR TRANSMIT SELF-REFERENCE
LDA A ECR ENABLE CHANNEL BUFFERS
STA A MSKDR

ENABLE TST MSCRB
BPL ENABLE

FLAG LDA A INTCRA WAIT FOR INITIALIZATION FLAG TO BE
BPL FLAG SET
JSR TE
JSR TE END OF TRANSMIT ANT) RECEIVE PHASE
JSR TD SELECTION AND DECISION PROCESS
CLR INTFL G CLEAR INITIALIZATION FLAG
RTI
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APPENDIX B

SOME CURRENT MICROPROCESSOR MANUFACTURERS

ADVANCED MICRO DEVICES MOTOROLA SEMICONDUCTOR PRODUCTS

901 Thompson Rd. 5005 E. McDowell

Sunnyvale , CA 94086 Phoenix , AZ 85062

AMERICAN MICROSYSTEM S, INC. NATIONAL SEMICONDUCTOR INC.

3800 Homestead Rd. 2900 Semiconductor

Santa Clara , CA 95051 San ta Clara , CA 95051

FAIRCHILD SEMICONDUCTOR RCA SOLID—STATE DIV.

464 Ellis St. Route 202

Mt View, CA 94042 Somerville, NJ 08876

GENERAl INSTRUMENTS ROCKWELL MICROELECTRONIC DEVICE DIV.

600 W . John St. 3310 Miraloina Ave .

Hicksv ille , NY 11802 Anaheim , CA 92803

INTEL CORP. SIGNETICS CORP.

3065 Bowers Ave . 811 E. Arques Ave.

San ta Clara , CA 95051 Sunnyvale , CA 94086

MONOLITHIC MEMORIES , INC. TOKYO SHIBAURA ELECTRIC CO.

1165 E. Arques Ave. Tokyo , Japan

- 1 Irvine , CA 94086

MOSTEK WESTERN DIGITAL CORP.

1215 W. Crosby Rd. 3128 Red Hil l

Carro llton , TX 75006 Newport Beach , CA 95051
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MISSION
of

Rome Air Development Center

RAW plans and conducts research , exploratory and advanced
development programs in command, control , and communications
(C 3) activities, and in the C3 area s of inf onnatior4 sciences
and intelligence. The principal technica l mission areas
are conurtunications, electromagnetic guidance and control ,
surveillance of ground and aerospace objects, intelligence
data collection and handling, inf ormation system technology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.
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